
As every coding tutorial starts with a “Hello World” example, we’ll also follow the same. Our
first tutorial on game development with phajer.js will be a “Hello World” example and a
little extension over that to make you familiarize with basic functions of phaser.js. All our
source code will be available in github.

So now let’s start with our code. Our directory structure will be like below, where
js/phaser.min.js file is the phaser APIs which you can download directly from our github
page or from phaser.io website. index.html will be the source file that we’ll modify.

|
|_ assets
| |_ images
| |_ sky.png
|
|_ js
| |_ phaser.min.js
|
|
|_ index.html

Now we’ll write our code inside index.html file. Just paste the following code inside this file.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Phaser Tutorial</title>
 <script type="text/javascript"
src="js/phaser.min.js"></script>
 </head>
 <body>

 <script type="text/javascript">

 var HEIGHT = 400;
 var WIDTH = 400;

 var game = new Phaser.Game(WIDTH, HEIGHT, Phaser.AUTO,
'hello-world-example', { preload: preload, create: create, update:

https://github.com/isonprojectsblog/phaser-hello-world
https://github.com/isonprojectsblog/phaser-hello-world

update });

 function preload() {
 }

 function create() {
 }

 function update() {
 }

 </script>

 </body>
</html>

Line 13-14 : We are defining the area of our game space. In ideal case it should be full
screen for your game. Later we’ll see how to make it full screen.

Line 16 : We are defining the game object. This is the main content holder for all game
related UI and other functions. While creating the game object, we’ve provided a few
callback functions(preload, create and update). We’ll learn more about these callback
functions later.

Now you can run this program in your browser using any server. I’m using mongosse server
as it is very lightweight. But you can use other server of your choice too. If you run your
server at port 8080 and your source directory name is phaser-hello-world, use the
URL http://localhost:8080/phaser-hello-world/ to see the output in your browser.

The above piece of code only shows a black 400×400 rectangle on your browser. It doesn’t
do anything else. We’ll add more pieces to it step by step. But before going into that let’s
talk about the callback functions that we provided in the Phaser.Game object.

preload: This function is called by phaser.js before the game object is created. This is
the function where you should load any resource required for your project. For
example load image resource.
create: called by phaser.js once the game object is initialized.
update: this function is used to update the game state.

https://www.cesanta.com/products/binary

Now lets add a “Hello World” text in our game screen. Just add the following piece of code
inside the create function.

var style = { font: "32px Arial", fill: "#ff0000", backgroundColor:
"#ffff00" };

game.add.text(0, 0, "Hello World", style);

Line #1 just creates a style for our font and Line #3 adds the actual text at screen position
(0,0) with the created style.

Next we’ll add an image background in our code. So load the required image inside the
preload function as below.

function preload() {
 game.load.image('background', 'assets/images/sky.png');
}

Here we are loading the image and assigning it a key named ‘background’. Later we’ll use
this key to draw the image. This is done by adding the following line of code at the
beginning of the create function.

background = game.add.sprite(0, 0, 'background');

One important thing to note here is that, phaser will draw any UI object according to the
sequence they are added. So if the above line of code is written at the end of create
function, phaser will first draw the “Hello World” text and then draw the background image
which will occlude the “Hello World” text. So when designing the game area, keep this in
mind.

Now if the background image resolution is smaller than the resolution of the game area, you
might want to scale up the image to cover the full game area. phaser has API for that too. So
if our background image resolution is 100 x 100 and our game area is 400 x 400, we can use
the following piece of code to scale up the image.

background = game.add.sprite(0, 0, 'background');
background.scale.setTo(4,4);

So that’s all for our “Hello World” example. In this tutorial we didn’t actually use the update
method. Next we’ll add more cool topics where we’ll show how to use the update

method and step by step we’ll develop a simple game. Don’t forget to checkout the code
from github.

https://github.com/isonprojectsblog/phaser-hello-world

