
This is an explanation of a Qt/C++ program written with Qt Creator IDE to draw a line or
rectangle dynamically on a QWidget.

I start from the basics as this is my second write up on Qt/C++. Here first a linewidget
class is created by subclassing from QWidget. Also concurrently Qt Creator generates a
file named linewidget.ui to assist in developing GUI visually and easily. But when we add
or change this file there must be a way to reflect that in our linewidget.cpp file.

It is done in this way: linewidget.ui is infact an xml file. QtCreator generates a class file
out of this xml file named ui_linewidget.h. Let’s have a look into this file below, it is
generally found in our project build directory. At the end of this file we see that our
linewidget class is actually inheriting from this autogenerated class ui_linewidget.h and it
is done in a namespace name Ui for convenience:

/***

** Form generated from reading UI file 'linewidget.ui'
**
** Created by: Qt User Interface Compiler version 5.4.1
**
** WARNING! All changes made in this file will be lost when
recompiling UI file!
**
**********/

#ifndef UI_LINEWIDGET_H
#define UI_LINEWIDGET_H

#include <QtCore/QVariant>
#include <QtWidgets/QAction>
#include <QtWidgets/QApplication>
#include <QtWidgets/QButtonGroup>
#include <QtWidgets/QHeaderView>
#include <QtWidgets/QPushButton>
#include <QtWidgets/QVBoxLayout>
#include <QtWidgets/QWidget>

QT_BEGIN_NAMESPACE

class Ui_lineWidget
{
public:
 QWidget *widget;
 QVBoxLayout *verticalLayout;
 QPushButton *btnLine;
 QPushButton *btnRect;

 void setupUi(QWidget *lineWidget)
 {
 if (lineWidget->objectName().isEmpty())
 lineWidget->setObjectName(QStringLiteral("lineWidget"));
 lineWidget->resize(517, 336);
 widget = new QWidget(lineWidget);
 widget->setObjectName(QStringLiteral("widget"));
 widget->setGeometry(QRect(410, 10, 77, 54));
 verticalLayout = new QVBoxLayout(widget);
 verticalLayout->setSpacing(6);
 verticalLayout->setContentsMargins(11, 11, 11, 11);
verticalLayout->setObjectName(QStringLiteral("verticalLayout"));
 verticalLayout->setContentsMargins(0, 0, 0, 0);
 btnLine = new QPushButton(widget);
 btnLine->setObjectName(QStringLiteral("btnLine"));

 verticalLayout->addWidget(btnLine);

 btnRect = new QPushButton(widget);
 btnRect->setObjectName(QStringLiteral("btnRect"));

 verticalLayout->addWidget(btnRect);

 retranslateUi(lineWidget);

 QMetaObject::connectSlotsByName(lineWidget);
 } // setupUi

 void retranslateUi(QWidget *lineWidget)

 {
lineWidget->setWindowTitle(QApplication::translate("lineWidget",
"lineWidget", 0));
 btnLine->setText(QApplication::translate("lineWidget", "Line",
0));
 btnRect->setText(QApplication::translate("lineWidget",
"Rectangle", 0));
 } // retranslateUi

};

namespace Ui {
 class lineWidget: public Ui_lineWidget {};
} // namespace Ui

QT_END_NAMESPACE

#endif // UI_LINEWIDGET_H

Now let’s have a look at our linewidget.h file, we shall see it declares here the namespace
and a forward declaration of the class linewidget. Thus our this class inherits all the
things from the ui_linewidget class plus here again we inherit from the QWidget to get all
the properties of it as well.

Here #pragma once is a Qt macro that avoids multiple inclusion of this header file. And
Q_OBJECT is another macro which tells the Qt meta object compiler (moc) that this class
inherits from QObject as well. Hence our linewidget class is inheriting like this ->
linewidget:QWidget:QObject. Also this macro gives the background supports for the Qt
slot and signal mechanism which is not part of the original C++. Other than that some
specific comments are added in this code segment:

#pragma once

#include <QPainter>
#include <QWidget>

namespace Ui {
 class lineWidget;
}

class lineWidget : public QWidget
{
 Q_OBJECT

public:
 //the constructor is marked explicit so that we don't get any
 // implicit conversion by passing the wrong parameter
 explicit lineWidget(QWidget *parent = 0); //also it has a default
null pointer value, so a linewidget can be created with null parameter
(i.e when we don't specify the constructor parenthesis at all!)
 bool mousePressed;
 bool drawStarted;
 int selectedTool;
 //destructor is needed when we construct a object on the heap
instead of stack
 // for efficient memory management
 ~lineWidget();

protected:
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void mouseReleaseEvent(QMouseEvent *event);
 void paintEvent(QPaintEvent *event);

private slots:
 void on_btnLine_clicked();
 void on_btnRect_clicked();

private:
 //we declare a linewidget pointer object using namespace
identifier;
 Ui::lineWidget *ui;
 QPainter painter;
 QPixmap mPix;
 QLine mLine;
 QRect mRect;

};

Here is the linewidget.cpp file, which in the constructor takes a pointer to parent as
argument. Also in the header file we said that it could be 0 as well. Let’s see how we are
actually creating a object of linewidget type in main.cpp file, we are just creating a object
without any parameter i.e we are calling the default constructor i.e it has no parent i.e it is
the last element in the hierarchy chain. Also we see that nowhere in the linewidget file we
declared show() method but we can use it as it is inherited from QWidget class:

lineWidget w;
w.show()

#include "linewidget.h"
#include "ui_linewidget.h"

#include <QMouseEvent>
#include <QPainter>

lineWidget::lineWidget(QWidget *parent) :
 QWidget(parent),
 ui(new Ui::lineWidget)
{
 ui->setupUi(this);
 mPix = QPixmap(400,400);
 mPix.fill(Qt::white);

 //set everything to false as nothing has started yet
 mousePressed = false;
 drawStarted = false;

 //default is line
 selectedTool = 2;
}

void lineWidget::mousePressEvent(QMouseEvent* event){
 //Mouse is pressed for the first time
 mousePressed = true;

 //set the initial line points, both are same
 if(selectedTool == 1){
 mRect.setTopLeft(event->pos());
 mRect.setBottomRight(event->pos());
 }
 else if (selectedTool == 2){
 mLine.setP1(event->pos());
 mLine.setP2(event->pos());
 }
}

void lineWidget::mouseMoveEvent(QMouseEvent* event){

 //As mouse is moving set the second point again and again
 // and update continuously
 if(event->type() == QEvent::MouseMove){
 if(selectedTool == 1){
 mRect.setBottomRight(event->pos());
 }
 else if (selectedTool == 2){
 mLine.setP2(event->pos());
 }
 }

 //it calls the paintEven() function continuously
 update();
}

void lineWidget::mouseReleaseEvent(QMouseEvent *event){

 //When mouse is released update for the one last time
 mousePressed = false;
 update();
}

void lineWidget::paintEvent(QPaintEvent *event){

 painter.begin(this);

 //When the mouse is pressed
 if(mousePressed){
 // we are taking QPixmap reference again and again
 //on mouse move and drawing a line again and again
 //hence the painter view has a feeling of dynamic drawing
 painter.drawPixmap(0,0,mPix);
 if(selectedTool == 1)
 painter.drawRect(mRect);
 else if(selectedTool == 2)
 painter.drawLine(mLine);

 drawStarted = true;
 }
 else if (drawStarted){
 // It created a QPainter object by taking a reference
 // to the QPixmap object created earlier, then draws a line
 // using that object, then sets the earlier painter object
 // with the newly modified QPixmap object
 QPainter tempPainter(&mPix);
 if(selectedTool == 1)
 tempPainter.drawRect(mRect);
 else if(selectedTool == 2)
 tempPainter.drawLine(mLine);

 painter.drawPixmap(0,0,mPix);
 }

 painter.end();
}

lineWidget::~lineWidget()
{
 delete ui;
}
//only two button is on the ui btnLine and btnRect
void lineWidget::on_btnLine_clicked()
{
 selectedTool = 2;

}

void lineWidget::on_btnRect_clicked()
{
 selectedTool = 1;
}

We use ” ” to identify local header file and < > to indicate library header file located in
specific location for that specific platform.

Now, how the line or rectangle is drawn on the QtWidget is mostly commented in the source
code. Basic principle is when the mouse is clicked two points are recorded. On mouse move
events we take the second point continuously and update on a QPixmap which has been
used to construct a QPainter. Later when the mouse button is released we draw the shape
on this mPix reference. Which is finally set on the earlier painter object. Thus newly
created items stays. This is the main.cpp file just in case:

#include "linewidget.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 lineWidget w;
 w.show();

 return a.exec();
}

Here is a demo of the drawing:

line and rectangle drawing

