
This is the second part of our char device driver development tutorial. In part1, we learnt
how to write a simple char device driver that supports read or write functions. We
dynamically assigned a major number for our driver and using the assigned major, we
manually created a device file in /dev directory.

In this tutorial we’ll show how to create the /dev file automatically. We’ll also show how a
user space program can communicate our char device driver using the read and write
functions. Finally we’ll be able to use our driver as a virtual device which reverse an input
string.

We’ll use the same code we developed in our previous first post of writing char device
driver and will incrementally update it. Let’s start by modifying the driver init function.

static int reverse_init(void){
 int ret = 0;
 printk("reverse_dev initializationn");

 majorNumber = register_chrdev(0, DEVICE_NAME, &reverseops);
 if (majorNumber < 0){
 printk("Device Registration Failedn");
 ret = majorNumber;
 goto register_unsuccessful;
 }
 else{
 printk("Device Registered With Major Number %dn",
majorNumber);
 }

 // register device class
 reversedevClass = class_create(THIS_MODULE, DEVICE_CLASS);
 if (IS_ERR(reversedevClass)){ // error: we've
to clean up allocated resource
 printk("Device Class Registration Unsuccessfuln");
 ret = PTR_ERR(reversedevClass);
 goto register_class_error;
 }

 // register the device, this will create the /dev file
 reverseDevice = device_create(reversedevClass,

http://isonprojects.com/writing-char-device-driver-part1/
http://isonprojects.com/writing-char-device-driver-part1/
http://isonprojects.com/writing-char-device-driver-part1/

NULL,
MKDEV(majorNumber, 0),
NULL,
DEVICE_NAME);

 if (IS_ERR(reverseDevice)){
 printk("device_create unsuccessfuln");
 ret = PTR_ERR(reverseDevice);;
 goto device_create_unsuccessful;
 }

 return ret;

device_create_unsuccessful:
 class_destroy(reversedevClass);

register_class_error:
 unregister_chrdev(majorNumber, DEVICE_NAME);

register_unsuccessful:
 return ret;
}

In line 15, we are creating a device class using the kernel API

struct class *class_create(struct module *owner, const
char* name)

 . We pass this device class to the device_create API which will create the device and
register it in file system. It’ll create our device file in /dev directory. It is important to check
for error in these functions and release any allocated resource in case of error.

We also need to modify the exit function which will deallocate all allocated resource. It is
very important as otherwise there’ll be irregular behavior.

static void reverse_exit(void){
 printk("Reverse Device Exitn");

https://www.kernel.org/doc/htmldocs/device-drivers/API-device-create.html

 device_destroy(reversedevClass, MKDEV(majorNumber, 0));
 class_unregister(reversedevClass);
 class_destroy(reversedevClass);
 unregister_chrdev(majorNumber, DEVICE_NAME);
}

We’ve to add the required headers at the beginning. The new header we need
is linux/devices.h. Also don’t forget to declare the DEVICE_NAME and DEVICE_CLASS
constant and global structure variables.

#include<linux/module.h>
#include<linux/fs.h>
#include <linux/device.h>

#define DEVICE_NAME "reversedev"
#define DEVICE_CLASS "IsonProjects Char Device"

static int majorNumber;
struct class* reversedevClass;
struct device* reverseDevice;

Now compile the driver using Makefile and install it using insmod command. A new
entry /dev/reversedev will be created on successful installation. Try

sudo cat /dev/reversedev

 command and in the dmesg output you’ll see the read function of our driver is being called.

Next we’ll do the actual computation part which in this case is our read and write file
operations. In our implementation we didn’t actually use any real hardware. What we’ve is
kind of virtual hardware. We mimic the behavior of a device which will reverse a string
input. We pass data to the device using the write operation and get back the result using
the read operation. We start by adding a buffer in our code. We’ll also add some header file
as we’ll use some functions from them.

#include <linux/slab.h>
#include <asm/uaccess.h>

#define BUFFER_LEN 100

char device_buffer[BUFFER_LEN];

This buffer is analogous to the buffer in a real hardware. If we had a real hardware, we
would have sent the data to it instead of a local buffer. We modify our write file operation to
store the written data in this buffer in reverse order.

static ssize_t reverse_write(struct file* filep, const char
*data_buffer, size_t len, loff_t *offset){
 int i = 0;
 int ret = 0;

 printk("reverse_dev write startn");

 if (len < BUFFER_LEN){
 char* temp_buffer = (char*)kmalloc(len, GFP_KERNEL);
 copy_from_user(temp_buffer, data_buffer, (int)len);

 // reverse the data and save to device_buffer
 for (i = 0; i<len; i++){
 device_buffer[i] = temp_buffer[len - 1 - i];
 }
 kfree(temp_buffer);
 ret = len;
 }
 else{
 strcpy(device_buffer, "Error: Insufficient Spacen");
 }

 return ret;
}

During read operation, we just pass the data from our device buffer to the reader. Look at
the code.

static ssize_t reverse_read(struct file* filep, char *data_buffer,
size_t len, loff_t *offset){

 int ret = 0;
 printk("reverse_dev read startn");

 if (len < BUFFER_LEN){
 copy_to_user(data_buffer, device_buffer, len);
 ret = len;
 }
 else{
 copy_to_user(data_buffer, device_buffer, BUFFER_LEN);
 ret = BUFFER_LEN;
 }

 return ret;
}

Both read and write function has an offset parameter. For this version of the code we don’t
need to manipulate this offset as we are reading from or writing to a local array starting
from 0 index. But for a real device, where data buffer is limited, we might need to
manipulate the offset accordingly so the hardware knows from which position to start
read/write.

Another important thing is the use of copy_from_user and copy_to_user functions. Note that
whenever we are copying some data from user buffer to kernel buffer or from kernel buffer
to user buffer, we’ve to use this function. Using simply strcpy or strncpy won’t work in that
case. Use of these functions are mandatory for security purpose as they ensure that an user
space program can’t access a kernel space memory. Also if the addresses are inaccessible,
these function will return an error instead of crashing the kernel.

So now our string reversal device driver is ready. We can install and start testing. To test
open two command line. One terminal will write to the device and another will read from it.
At first, from 1st terminal we initiate a write request using the

echo "abc" > /dev/reversedev

 command. Here we are asking our driver to write 3 bytes to our virtual device.

Next, from the 2nd terminal, read 3 bytes from our virtual device using

head -c 3 /dev/reversedev

 command. If you’ve done everything correctly, this command should print “cba” in the
terminal window which is the reverse of what we’ve written.

 If the above commands throw any “Permission Denied” issue, then you might have to
change the permission of the /dev/reversedev file. You can use either chmod or chown
command for doing that. I’ll not discuss details of that in this tutorial.

We’re done with writing our first char device driver. I hope it’ll help you to get some basic
idea of device driver development.

