
In this post we’ll take our 1st step of writing a char device driver for Linux. In our previous
post, which I would recommend you to read unless you already did, we created a very
simple kernel module. Other than dumping some log message, it didn’t do anything fancy. In
this post we’ll create a char device driver which creates a device file in /dev directory. We’ll
also show how a user space program can read from or write to this device file. And finally
we’ll modify it to reverse a string. We’ll name our device driver as “reversedev“. I also
assume, by now you know how to compile and install a kernel module and how to test kernel
log using dmesg command. If you don’t you definitely need to read this.

We’ll go step by step and will make sure at each step our code compiles and works as a
functional kernel module. So let start with following simple kernel module code. We name
our source file as “reverse_dev.c“.

#include<linux/module.h>
#include<linux/fs.h>

#define DEVICE_NAME "reversedev"

static int reverse_init(void){
 printk("Reverse Device Initializationn");

 return 0;
}

static void reverse_exit(void){
 printk("Reverse Device Exitn");
}

module_init(reverse_init);
module_exit(reverse_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("IsonProjects");
MODULE_DESCRIPTION("Virtual Device For String Reversal");

The above code can work as a standalone kernel module. But to make it work as a char
device, we’ve to provide implementation for open, close, read and write functions.

http://isonprojects.com/writing-linux-kernel-module/
http://isonprojects.com/writing-linux-kernel-module/

Otherwise no userspace application can access our device as a file. We use
the file_operations structure which works as a placeholder for these functions.

The file_operations structure is a collection of function pointers and defined in <linux/fs.h>.
The following code block shows our function implementation and how they are assigned
to file_operations structure. Add following code block just after the header files of the above
code.

static int reverse_open(struct inode*, struct file*);
static ssize_t reverse_read(struct file*, char*, size_t, loff_t*);
static ssize_t reverse_write(struct file*, const char*, size_t,
loff_t*);
static int reverse_release(struct inode*, struct file*);

static struct file_operations reverseops =
{
 .open = reverse_open,
 .read = reverse_read,
 .write = reverse_write,
 .release = reverse_release,
};

static int reverse_open(struct inode* inodep, struct file* filep){
 printk("reverse_dev openedn");
 return 0;
}

static int reverse_release(struct inode* inodep, struct file* filep){
 printk("reverse_dev releasedn");
 return 0;
}

static ssize_t reverse_read(struct file* filep, char *data_buffer,
size_t len, loff_t *offset){
 printk("reverse_dev read startn");
 return 0;

}

static ssize_t reverse_write(struct file* filep, const char
*data_buffer, size_t len, loff_t *offset){
 printk("reverse_dev write startn");
 return len;
}

The next step is to register our char device driver with the system. We do it
using register_chrdev API. This API can dynamically allocate a major number for our driver
and return it if the registration process is successful, otherwise return a negative number.
Registration process should start during driver initialization. Also an allocated major should
be released using unregister_chrdev API during driver exit. So replace the reverse_init and
reverse_exit function with the following code.

static int reverse_init(void){
 printk("reverse_dev initializationn");

 // dynamically allocate a major number and assing
file_operations
 majorNumber = register_chrdev(0, DEVICE_NAME, &reverseops);
// 0 means dynamic allocation
 if (majorNumber < 0){
 printk("Device Registration Failedn");
 goto register_unsuccessful;
 }
 else{
 printk("Device Registered With Major Number %dn",
majorNumber);
 }

 return 0;

register_unsuccessful:
 return majorNumber;
}

static void reverse_exit(void){
 printk("Reverse Device Exitn");
 unregister_chrdev(majorNumber, DEVICE_NAME);
}

In the above code portion, we’re asking the system to dynamically allocate a major number
for our device. We assign the returned number to a global variable. Add the global
variable at the beginning of the source file just after the header files.

static int majorNumber;

All the codes we’ve written so far assigns a major for our device and assign some file
operation to that major. But it didn’t create any device file in the /dev directory. For this
tutorial we’ll create the device file manually and on our next tutorial we’ll learn how to
create the device file dynamically.

Compile and install our char driver and note the major number from the output of dmesg
command. We’ll need this major for creating device file entry. The device file is created
using the mknod command. This command needs the assigned major number for our device.
In my system, the major number assigned to me was 250. So I used the following command
to create the device file.

sudo mknod /dev/reversedev c 250 0

 Now our char device driver is ready to test. We can use some user mode application
for testing the file operations on our driver. I’ll use the cat command for reading from the
device and echo command for writing to the device.

Read from Char Device Test:

Open a terminal window and run

cat /dev/reversedev

 command. If everything is okay you should be able to see following text in dmesg output.

reverse_dev opened
reverse_dev read start

reverse_dev released

Write to Char Device Test:

Open a terminal window and run

sudo echo "abc" /dev/reversedev

 command. If everything is okay you should be able to see following text in dmesg output.

reverse_dev opened
reverse_dev write start
reverse_dev released

In both cases compare the dmesg output with the printk function calls used inside the
functions used for file_operations structure to get an idea which function gets called at
which time.

This tutorial only demonstrated how to create a char device driver. We’ve installed the
driver, create device file for our driver and showed how a userspace program can read from
or write to the device file. But so far our driver doesn’t do anything else other than printing
some messages in the kernel log. In my next tutorial I’ll show how to modify the read
and write function to do something useful.

