
Writing Linux kernel module is a daunting task. This easy to follow, step by step guide will
show us all the steps of writing Linux kernel module. Read this writing to learn about what
is a kernel module.

This tutorial will be our starting point for writing Linux kernel module. For this one
we won’t be using any real hardware. But gradually we’ll learn how to write a device driver
for an actual hardware. Our approach will start from learning most basic module to
advanced device driver.

Preparation:

Before writing Linux kernel module, at first we’ve to prepare our system for compiling
the module code. We’ve to install kernel headers. Kernel headers are header file for
kernel module. Without the header files, our module won’t recognize the kernel
functions. We can install the kernel headers using following command.

sudo apt-get install linux-headers-$(uname -
r)

Writing the code:

Now lets start with this simple code. Save this code in a file and name it test_module.c

#include <linux/module.h>

static int test_module_init(void)
{
 printk("Test Module Installedn")

 return 0;
}

static void test_module_exit(void)

http://isonprojects.com/linux-kernel-module/

{
 printk("Test Module Removedn")
}

module_init(test_module_init);
module_exit(test_module_exit);

MODULE_AUTHOR("IsonProjects");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Simple Kernel Module");

Now lets see a step by step illustration of what’s going on in this code. The macros at
t h e e n d o f t h e c o d e M O D U L E _ A U T H O R , M O D U L E _ L I C E N S E ,
MODULE_DESCRIPTION just gives information about the author of the module, the
license of the module and some description.

Every kernel module must have an initialization function and an exit function. The
initialization function is the entry point of the kernel module where we should initialize
all data structure that are required for kernel function. The exit function is the exit point
of the kernel where we can release the allocated resources. In modern kernel we can
name the initialization and exit function anything we want, provided it doesn’t violate
normal function naming guideline. In the above code, our initialization function
is test_module_init and exit function is test_module_exit. But the kernel doesn’t know
which one is for initialization and which one is for exit. We’ve to let the kernel know
about each function. This is done with module_init and module_exit. module_init will
declare which function is initialization function(line 15) and module_exit will declare
the exit function (line 16).

Write Makefile:

Next step is to create a Makefile for building our kernel module. Write the following
code in a file and save it with the name Makefile. We’ll use this same Makefile or a
little modification of it in our other tutorials. Note that the first line of the Makefile
contains the name of the source file with .o extension.

obj-m := test_module.o

KERNELDIR ?= /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)

all:
 $(MAKE) -C $(KERNELDIR) M=$(PWD)

clean:
 rm -f *.o *~ core .depend .*.cmd *.ko *.mod.c
 rm -rf .tmp_versions
 rm Module.symvers
 rm modules.order

Compile & Build:

Next step is to actually build the kernel module from the source. Keep
both test_module.c and Makefile in the same directory. Open a terminal and go to
that directory and run the make command from the terminal. This will compile the
kernel module source code and create the binary. Multiple files will be created inside
that directory. Look for the one with a .ko extension. This is the desired binary that
we’ve to install. In our case the created binary name will be test_module.ko.

Install the binary:

Now we’ve to install the created binary. We’ll use insmod command for installing the
module. This command requires root permission. We execute the following command.

sudo insmod test_module.ko

This command will install the kernel module in the system.

Testing:

So far we’ve written the kernel module, compiled it, created the executable binary and
installed it in the system. Now we need to test that it actually worked. Notice in the
module initialization function we have a printk function call. This function will print the
string in the kernel log. We can use the dmesg command to check the kernel log. In the
terminal execute dmesg command and you’ll see a bunch of text is displayed on the

terminal. Look at the bottom of the text. If our kernel module installation was
successful, we should see the text “Test Module Installed” in the log.

Uninstall the module:

To uninstall the kernel module we use the rmmod command as below

sudo rmmod test_module.ko

This will remove the module from the system. Run the dmesg command and you’ll see
the text “Test Module Removed” in the kernel log.

